Optimal Runge-Kutta schemes for discontinuous Galerkin space discretizations applied to wave propagation problems
نویسندگان
چکیده
We study the performance of methods of lines combining discontinuous Galerkin spatial discretizations and explicit Runge-Kutta time integrators, with the aim of deriving optimal Runge-Kutta schemes for wave propagation applications. We review relevant Runge-Kutta methods from literature, and consider schemes of order q from 3 to 4, and number of stages up to q + 4, for optimization. From a user point of view, the problem of the computational efficiency involves the choice of the best combination of mesh and numerical method; two scenarios are defined. In the first one, the element size is totally free, and a 8-stage, fourth-order Runge-Kutta scheme is found to minimize a cost measure depending on both accuracy and stability. In the second one, the elements are assumed to be constrained to such a small size by geometrical features of the computational domain, that accuracy is disregarded. We then derive one 7-stage, third-order scheme and one 8-stage, fourth-order scheme that maximize the stability limit. The performance of the three new schemes is thoroughly analyzed, and the benefits are illustrated with two examples. For each of these Runge-Kutta methods, we provide the coefficients for a 2N-storage implementation, along with the information needed by the user to employ them optimally.
منابع مشابه
Numerical Solutions of Euler Equations by Runge-kutta Discontinuous Galerkin Method
Runge-Kutta discontinuous Galerkin (RKDG) method is a high order finite element method for solving hyperbolic conservation laws employing useful features from high resolution finite volume schemes, such as the exact or approximate Riemann solvers serving as numerical fluxes, TVD Runge-Kutta time discretizations and limiters. In most of the RKDG papers in the literature, the LaxFriedrichs numeri...
متن کاملDiscontinuous Galerkin Methods for Convection-Dominated Problems
In this paper, we review the development of the Runge–Kutta discontinuous Galerkin (RKDG) methods for non-linear convection-dominated problems. These robust and accurate methods have made their way into the main stream of computational fluid dynamics and are quickly finding use in a wide variety of applications. They combine a special class of Runge–Kutta time discretizations, that allows the m...
متن کاملHigh Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation
This paper deals with a high-order accurate Runge Kutta Discontinuous Galerkin (RKDG) method for the numerical solution of the wave equation, which is one of the simple case of a linear hyperbolic partial differential equation. Nodal DG method is used for a finite element space discretization in ‘x’ by discontinuous approximations. This method combines mainly two key ideas which are based on th...
متن کاملMultigrid Optimization for Space-Time Discontinuous Galerkin Discretizations of Advection Dominated Flows
The goal of this research is to optimize multigrid methods for higher order accurate space-time discontinuous Galerkin discretizations. The main analysis tool is discrete Fourier analysis of twoand three-level multigrid algorithms. This gives the spectral radius of the error transformation operator which predicts the asymptotic rate of convergence of the multigrid algorithm. In the optimization...
متن کاملCFL Conditions for Runge-Kutta discontinuous Galerkin methods on triangular grids
We study time step restrictions due to linear stability constraints of Runge-Kutta Discontinuous Galerkin methods on triangular grids. The scalar advection equation is discretized in space by the Discontinuous Galerkin method with either the Lax-Friedrichs flux or the upwind flux, and integrated in time with various Runge-Kutta schemes designed for linear wave propagation problems or non-linear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 231 شماره
صفحات -
تاریخ انتشار 2012